

your BEST camera module partner

JAL-OV4689 V1.0 IR850

OmniVision OV4689 MIPI串行接口 固定焦距 400万像素 M12 摄像头模组 850nm IR红外滤光片

摄像头模组型号	JAL-OV4689 V1.0 IR850
图像感光芯片	OV4689
焦距	2.35 mm
光圈	2.5
像素	2688 x 1520
可视角度	160°(D) 98°(H)
镜头类型	1/3 英寸,IR 850nm Pass Filter
镜头尺寸	13.7 x 13.7 x 14.2 mm
模组尺寸	40.05 x 17 mm
模组类型	固定焦距
接口	MIPI串行

www.KaiLapTech.com sales@KaiLapTech.com Tel: (852) 6908 1256 Fax: (852) 3017 6778

All rights reserved @ Kai Lap Technologies Group Ltd. Specifications subject to change without notice.

OV4689 4MP product brief

lead free available in a lead-free package

High Frame Rate 4-Megapixel CameraChip[™] Sensor with Excellent Low-Light Sensitivity and High Dynamic Range for Security Applications

The OV4689 is a high performance 4-megapixel CameraChip sensor in a native 16:9 format designed for next-generation surveillance and security systems. The sensor utilizes an advanced 2-micron OmniBSI-2[™] pixel to provide best-in-class low-light sensitivity and high dynamic range (HDR).

The 1/3-inch OV4689 can capture full-resolution 4-megapixel high definition (HD) video at 90 frames per second (fps), 1080p HD at 120 fps, and binned 720p HD at 180 fps. The sensor's high frame rates enable crisp, clean image and video capture of fast moving objects.

The OV4689 provides timing to capture full-resolution HDR using frame-based "sequential HDR" or line-based "staggered HDR", and quarter resolution HDR using

"alternate row HDR". The benefits of using "staggered HDR" compared to "sequential HDR" are significant reduction in motion artifacts and lower memory requirement for host processing. These modes produce high quality full-resolution 4-megapixel HDR video under extreme variations of bright and dark conditions, ensuring high contrast and excellent scene reproduction.

The OV4689 features a high-speed 4-lane MIPI serial output interface to facilitate the required high data transfer rate. The OV4689 is available in a chip scale package (CSP).

Find out more at www.ovt.com.

Applications

Security and Surveillance

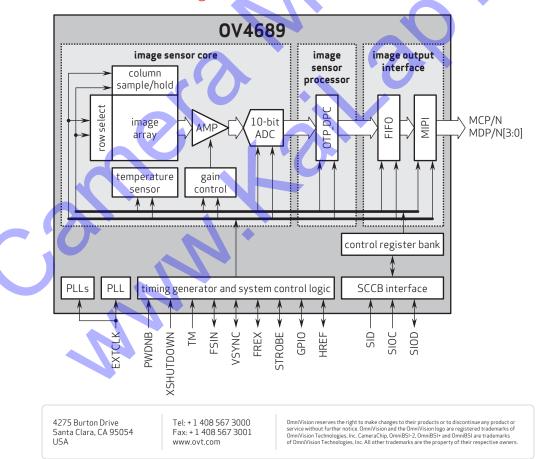
Product Features

- automatic black level calibration (ABLC) standard serial SCCB interface
- programmable controls for frame rate, mirror and flip, cropping, and windowing
- static defective pixel canceling
- supports output formats: 10-bit RAW RGB (MIPI)
- supports horizontal and vertical subsampling
- supports images sizes: 4MP, 3MP, EIS1080p, 1080p, EIS720p
- fast mode switching
- support 2x2 binning, 4x4 binning, re-sampling filter

- up to 4-lane MIPI serial output interface
- embedded 4K bits one-time programmable (OTP) memory for part identification, etc
- two on-chip phase lock loops (PLLs)
- programmable I/O drive capability
- built-in temperature sensor
- supports staggered, sequential and alternative row HDR timing

OV04689-H67A (color, lead-free, 67-pin CSP5)

Product Specifications


- active array size: 2688 x 1520
- power supply:
 core: 1.1 1.3V
 analog: 2.6 3.0V
 I/O: 1.7 3.0V
- power requirements: active: 163 mA (261 mW)
- -standby:1 mA - XSHUTDOWN: <10 µA
- temperature range:
 operating: -30°C to +85°C junction temperature stable image: 0°C to +60°C junction
- temperature output formats: 10-bit RAW RGB data
- lens size: 1/3"
- input clock frequency: 6 64 MHz
- lens chief ray angle: 0°

max S/N ratio: 38.3 dB ■ dynamic range: 64.6 dB @ 1x gain

0V4689

- maximum image transfer rate: 2688x1520: 90 fps 1920x1080: 120 fps
- -1280x720:180 fps sensitivity: 1900 mV/lux-sec
- scan mode: progressive
- maximum exposure interval: 1548 x T_{ROW}
- pixel size: 2 µm x 2 µm
- dark current: 4 mV/sec
 @ 60°C junction temperature
- **image area:** 5440 μm x 3072 μm
- package dimensions: 6630 μm x 5830 μm

Functional Block Diagram

Version 1.4, December, 2015